
Welcome to 
6.00.1x

16.00.1X LECTURE



OVERVIEW OF COURSE
 learn computational modes of 
thinking

 master the art of computational 
problem solving

 make computers do what you want 
them to do

6.00.1X LECTURE 2

https://ohthehumanityblog.files.wordpress.com/2014/09/computerthink.gif



TOPICS
 represent knowledge with data structures

 iteration and recursion as computational metaphors

 abstraction of procedures and data types

 organize and modularize systems using object classes 
and methods

 different classes of algorithms, searching and sorting

 complexity of algorithms

6.00.1X LECTURE 3



WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations
a billion calculations per second!

two operations in same time light travels 1 foot

◦ remembers results
100s of gigabytes of storage!

typical machine could hold 1.5M books of standard size 

 What kinds of calculations?
◦ built-in to the language
◦ ones that you define as the programmer

6.00.1X LECTURE 4



SIMPLE CALCULATIONS 
ENOUGH?
 Searching the World Wide Web

◦ 45B pages; 1000 words/page; 10 operations/word to find

◦ Need 5.2 days to find something using simple operations

 Playing chess
◦ Average of 35 moves/setting; look ahead 6 moves; 1.8B 

boards to check; 100 operations/choice

◦ 30 minutes to decide each move

 Good algorithm design also needed to accomplish a 
task!

6.00.1X LECTURE 5



ENOUGH STORAGE?
 What if we could just pre-compute information and 
then look up the answer
◦ Playing chess as an example

◦ Experts suggest 10^123 different possible games

◦ Only 10^80 atoms in the observable universe

6.00.1X LECTURE 6



ARE THERE LIMITS?
 Despite its speed and size, a computer does have 
limitations
◦ Some problems still too complex

◦ Accurate weather prediction at a local scale

◦ Cracking encryption schemes

◦ Some problems are fundamentally impossible to compute
◦ Predicting whether a piece of code will always halt with an answer 

for any input

6.00.1X LECTURE 7



6.00.1X LECTURE 8



TYPES OF KNOWLEDGE
 computers know what you tell them

 declarative knowledge is statements of fact. 
◦ there is candy taped to the underside of one chair

 imperative knowledge is a recipe or “how-to”
knowledge 
1) face the students at the front of the room
2) count up 3 rows
3) start from the middle section’s left side 
4) count to the right 1 chair
5) reach under chair and find it

6.00.1X LECTURE 9



A NUMERICAL EXAMPLE
 square root of a number x is y such that y*y = x

 recipe for deducing square root of number x (e.g. 16)
1) Start with a guess, g

2) If g*g is close enough to x, stop and say g is the 
answer 

3) Otherwise make a new guess by averaging g and x/g

4) Using the new guess, repeat process until close enough

6.00.1X LECTURE 10

g g*g x/g (g+x/g)/2

3 9 5.333 4.1667

4.1667 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002



WHAT IS A RECIPE

1) sequence of simple steps

2) flow of control process 
that specifies when each 
step is executed

3) a means of determining 
when to stop

Steps 1+2+3 = an algorithm!

6.00.1X LECTURE 11



6.00.1X LECTURE 12



COMPUTERS ARE MACHINES
 how to capture a 
recipe in a mechanical 
process

 fixed program 
computer
◦ calculator

◦ Alan Turing’s Bombe

 stored program 
computer
◦ machine stores and 

executes instructions

6.00.1X LECTURE 13

http://www.upgradenrepair.com/computerparts/computerparts.htm

CC-BY SA 2.0 dIaper



BASIC MACHINE ARCHITECTURE

6.00.1X LECTURE 14

MEMORY

CONTROL 

UNIT

ARITHMETIC 

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops



STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each 
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.00.1X LECTURE 15



BASIC PRIMITIVES
 Turing showed you can compute anything 
using 6 primitives

 modern programming languages have 
more convenient set of primitives

 can abstract methods to create new 
primitives

 anything computable in one language is 
computable in any other programming 
language

6.00.1X LECTURE 16

By GabrielF (Own work) [CC BY-
SA 3.0 
(http://creativecommons.org/lic
enses/by-sa/3.0)], via 
Wikimedia Commons



6.00.1X LECTURE 17



CREATING RECIPES
 a programming language provides a set of primitive 
operations

 expressions are complex but legal combinations of 
primitives in a programming language

 expressions and computations have values and 
meanings in a programming language

6.00.1X LECTURE 18



ASPECTS OF LANGUAGES
 primitive constructs

◦ English: words

◦ programming language: numbers, strings, simple 
operators

6.00.1X LECTURE 19



ASPECTS OF LANGUAGE
 syntax

◦ English: "cat dog boy"     not syntactically valid

"cat hugs boy" syntactically valid

◦ programming language: "hi"5 not syntactically valid

3.2*5 syntactically valid

6.00.1X LECTURE 20



ASPECTS OF LANGUAGES
 static semantics is which syntactically valid strings have 
meaning
◦ English: "I are hungry" syntactically valid

but static semantic error

◦ programming language: 3.2*5  syntactically valid

3+"hi" static semantic error

6.00.1X LECTURE 21



ASPECTS OF LANGUAGES
 semantics is the meaning associated with a 
syntactically correct string of symbols with no static 
semantic errors
◦ English: can have many meanings –

◦ “Flying planes can be dangerous”  

◦ “This reading lamp hasn’t uttered a word since 
I bought it?”

◦ programming languages: have only one meaning but may 
not be what programmer intended

6.00.1X LECTURE 22



WHERE THINGS GO WRONG
 syntactic errors

◦ common and easily caught

 static semantic errors
◦ some languages check for these before running program

◦ can cause unpredictable behavior

 no semantic errors but different meaning than what 
programmer intended
◦ program crashes, stops running

◦ program runs forever

◦ program gives an answer but different than expected

6.00.1X LECTURE 23



OUR GOAL
 Learn the syntax and semantics of a programming 
language

 Learn how to use those elements to translate 
“recipes” for solving a problem into a form that the 
computer can use to do the work for us 

 Learn computational modes of thought to enable us 
to leverage a suite of methods to solve complex 
problems

6.00.1X LECTURE 24



6.00.1X LECTURE 25



PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated 

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do 
something

 can be typed directly in a shell or stored in a file that 
is read into the shell and evaluated

6.00.1X LECTURE 26



OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things 
programs can do to them

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.00.1X LECTURE 27



SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

In [1]: type(5)

Out[1]: int

In [2]: type(3.0)

Out[2]: float

6.00.1X LECTURE 28



TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.00.1X LECTURE 29



PRINTING TO CONSOLE
 To show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.00.1X LECTURE 30



EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.00.1X LECTURE 31



OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i//j int division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.00.1X LECTURE 32

- if both are ints, result is int
- if either or both are floats, result is float

- result is int, quotient without remainder

- result is float



SIMPLE OPERATIONS
 parentheses used to tell Python to do these 
operations first
◦ 3*5+1 evaluates to 16

◦ 3*(5+1) evaluates to 18

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.00.1X LECTURE 33



6.00.1X LECTURE 34



BINDING VARIABLES AND 
VALUES
 equal sign is an assignment of a value to a variable 
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by 
invoking the name, by typing pi

6.00.1X LECTURE 35



ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.00.1X LECTURE 36



PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

# area of circle

area = pi*(radius**2)

radius = radius+1

6.00.1X LECTURE 37



CHANGING BINDINGS
 can re-bind variable names using new assignment 
statements

 previous value may still stored in memory but lost the 
handle for it

 value for area does not change until you tell the 
computer to do the calculation again

6.00.1X LECTURE 38

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1



6.00.1X LECTURE 39



COMPARISON OPERATORS ON
int and float
 i and j are any variable names

i>j

i>=j

i<j

i<=j

i==j equality test, True if i equals j

i!=j inequality test, True if i not equal to j

6.00.1X LECTURE 40



LOGIC OPERATORS ON bools
 a and b are any variable names

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.00.1X LECTURE 41



If right clear,
go right 

If right blocked,
go forward

If right and 
front blocked,

go left

If right , front, 
left blocked,

go back

6.00.1X LECTURE 42



BRANCHING PROGRAMS
The simplest branching statement 
is a conditional
◦ A test (expression that evaluates to 
True or False)

◦ A block of code to execute if the 
test is True

◦ An optional block of code to 
execute if the test is False

6.00.1X LECTURE 43



A SIMPLE EXAMPLE
x = int(input('Enter an integer: '))

if x%2 == 0:

print(‘’)

print('Even')

else:

print(‘’)

print('Odd')

print(’Done with conditional')

6.00.1X LECTURE 44



SOME OBSERVATIONS
The expression x%2 == 0 evaluates to True when 
the remainder of x divided by 2 is 0

Note that == is used for comparison, since = is 
reserved for assignment

The indentation is important – each indented set of 
expressions denotes a block of instructions
◦ For example, if the last statement were indented, it would 

be executed as part of the else block of code

Note how this indentation provides a visual structure 
that reflects the semantic structure of the program

6.00.1X LECTURE 45



NESTED CONDITIONALS
if x%2 == 0:

if x%3 == 0:

print('Divisible by 2 and 3’)

else:

print('Divisible by 2 and not by 3’)

elif x%3 == 0:

print('Divisible by 3 and not by 2’)

6.00.1X LECTURE 46



COMPOUND BOOLEANS
if x < y and x < z:

print('x is least’)

elif y < z:

print('y is least’)

else:

print('z is least’)  

6.00.1X LECTURE 47



CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression> 

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.00.1X LECTURE 48



INDENTATION
 matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal”)

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller”)

else:

print("y is smaller”)

print("thanks!”)

6.00.1X LECTURE 49



= vs ==
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal”)

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller”)

else:

print("y is smaller”)

print("thanks!”)

6.00.1X LECTURE 50



WHAT HAVE WE ADDED?
 Branching programs allow us to make choices and do 
different things

 But still the case that at most, each statement gets 
executed once.

 So maximum time to run the program depends only 
on the length of the program

 These programs run in constant time

6.00.1X LECTURE 51


