
STRINGS,
BRANCHING,
ITERATION

6.00.1X LECTURE 1

VARIABLES (REVISITED)
 name

◦ descriptive

◦ meaningful

◦ helps you re-read code

◦ cannot be keywords

 value
◦ information stored

◦ can be updated

6.00.1X LECTURE 2

VARIABLE BINDING WITH =
 compute the right hand side VALUE

 store it (aka bind it) in the left hand side VARIABLE

 left hand side will be replaced with new value

 = is called assignment

x = 2

x = x*x

y = x+1

6.00.1X LECTURE 3

BINDING EXAMPLE
 swap variables

– is this ok?

x = 1

y = 2

y = x

x = y

 swap variables

– this is ok!

x = 1

y = 2

temp = y

y = x

x = temp

6.00.1X LECTURE 4

6.00.1X LECTURE 5

TYPES
 variables and expressions

◦ int

◦ float

◦ bool

◦ string -- NEW

◦ … and others we will see later

6.00.1X LECTURE 6

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there”

greetings = ‘hello’

 concatenate strings
name = "eric"

greet = hi + name

greeting = hi + " " + name

6.00.1X LECTURE 7

OPERATIONS ON STRINGS
 ‘ab’+ ‘cd’ concatenation

 3* ‘eric’ successive concatenation

 len(‘eric’) the length

 ‘eric’[1] indexing

 ‘eric’[1:3] slicing

6.00.1X LECTURE 8

- Begins with index 0
- Attempting to index beyond

length – 1 is an error

- Extracts sequence starting at first
index, and ending before second
index

- If no value before :, start at 0
- If no value after :, end at length
- If just :, make a copy of entire

sequence

6.00.1X LECTURE 9

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.00.1X LECTURE 10

INPUT/OUTPUT: input("")
 prints whatever is within the quotes

 user types in something and hits enter

 returns entered sequence

 can bind that value to a variable so can reference
text = input("Type anything... ")

print(5*text)

 input returns a string so must cast if working with numbers
num = int(input("Type a number... "))

print(5*num)

6.00.1X LECTURE 11

6.00.1X LECTURE 12

IDE’s
 painful to just type things into a shell

 better to have a text editor – integrated development
environment (IDE)
◦ IDLE or Anaconda are examples

 comes with
◦ Text editor – use to enter, edit and save your programs

◦ Shell – place in which to interact with and run your
programs; standard methods to evaluate your programs
from the editor or from stored files

◦ Integrated debugger (we’ll use later)

6.00.1X LECTURE 13

6.00.1X LECTURE 14

6.00.1X LECTURE 15

BRANCHING PROGRAMS
(REVISITED)

The simplest branching statement
is a conditional
◦ A test (expression that evaluates to
True or False)

◦ A block of code to execute if the
test is True

◦ An optional block of code to
execute if the test is False

6.00.1X LECTURE 16

COMPARISON OPERATORS ON
int and float
 i and j are any variable names

i>j

i>=j

i<j

i<=j

i==j equality test, True if i equals j

i!=j inequality test, True if i not equal to j

6.00.1X LECTURE 17

LOGIC OPERATORS ON bools
 a and b are any variable names

not a True if a is False
False if a is True

a and b True if both are True

a or b True if either or both are True

6.00.1X LECTURE 18

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.00.1X LECTURE 19

USING CONTROL IN LOOPS
 simple branching programs just make choices, but
path through code is still linear

 sometimes want to reuse parts of the code
indeterminate number of times

6.00.1X LECTURE 20

 You are playing a
video game, and are
lost in some woods

 If you keep going
right, takes you back
to this same screen,
stuck in a loop

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

and so on and on and on...

else:

<set background to exit_background>

else:

<set background to exit_background>

else:

<set background to exit_background>

6.00.1X LECTURE 21

You are in the Lost Forest.

Go left or right?

while <exit right>:

<set background to woods_background>

<set background to exit_background>

6.00.1X LECTURE 22

You are in the Lost Forest.

Go left or right?

 You are playing a
video game, and are
lost in some woods

 If you keep going
right, takes you back
to this same screen,
stuck in a loop

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.00.1X LECTURE 23

while LOOP EXAMPLE
You are in the Lost Forest.

Go left or right?

n = input("You are in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You are in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!”)

6.00.1X LECTURE 24

CONTROL FLOW:
while and for LOOPS
more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.00.1X LECTURE 25

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.00.1X LECTURE 26

range(start,stop,step)
 default values are start = 0 and step = 1 and is optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.00.1X LECTURE 27

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.00.1X LECTURE 28

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

print(mysum)

 what happens in this program?

6.00.1X LECTURE 29

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.00.1X LECTURE 30

6.00.1X LECTURE 31

ITERATION
 Concept of iteration let’s us extend
simple branching algorithms to be able to
write programs of arbitrary complexity
◦ Start with a test

◦ If evaluates to True, then execute loop
body once, and go back to reevaluate the
test

◦ Repeat until test evaluates to False,
after which code following iteration
statement is executed

6.00.1X LECTURE 32

AN EXAMPLE
x = 3

ans = 0

itersLeft = x

while (itersLeft != 0):

ans = ans + x

itersLeft = itersLeft – 1

print(str(x) + '*' + str(x) + ' = ' + str(ans))

This code squares the value of x by repetitive addition.

6.00.1X LECTURE 33

x ans itersLeft

3 0 3

3 2

6 1

9 0

STEPPING THROUGH CODE
x = 3

ans = 0

itersLeft = x

while (itersLeft != 0):

ans = ans + x

itersLeft = itersLeft – 1

print(str(x) + '*' + str(x) + ' = ' + str(ans))

Some properties of iteration loops:
• need to set an iteration variable outside the loop
• need to test variable to determine when done
• need to change variable within the loop, in addition to other work

6.00.1X LECTURE 34

ITERATIVE CODE
 Branching structures (conditionals) let us jump to
different pieces of code based on a test
◦ Programs are constant time

 Looping structures (e.g., while) let us repeat pieces of
code until a condition is satisfied
◦ Programs now take time that depends on values of

variables, as well as length of program

6.00.1X LECTURE 35

6.00.1X LECTURE 36

CLASSES OF ALGORITHMS
 Iterative algorithms allow us to do more complex
things than simple arithmetic

We can repeat a sequence of steps multiple times
based on some decision; leads to new classes of
algorithms

 One useful example are “guess and check” methods

6.00.1X LECTURE 37

GUESS AND CHECK
 Remember our “declarative” definition of square root
of x

 If we could guess possible values for square root (call
it g), then can use definition to check if g*g = x

We just need a good way to generate guesses

6.00.1X LECTURE 38

FINDING CUBE ROOT OF
INTEGER
 One way to use this idea of generating guesses in
order to find a cube root of x is to first try 0**3, then
1**3, then 2**3, and so on

 Can stop when reach k such that k**3 > x

 Only a finite number of cases to try

6.00.1X LECTURE 39

SOME CODE
x = int(input('Enter an integer: '))

ans = 0

while ans**3 < x:

ans = ans + 1

if ans**3 != x:

print(str(x) + ' is not a perfect cube')

else:

print('Cube root of ' + str(x) + ' is ' + str(ans))

6.00.1X LECTURE 40

EXTENDING SCOPE
 Only works for positive integers

 Easy to fix by keeping track of sign, looking for solution
to positive case

6.00.1X LECTURE 41

SOME CODE
x = int(input('Enter an integer: '))

ans = 0

while ans**3 < abs(x):

ans = ans + 1

if ans**3 != abs(x):

print(str(x) + ' is not a perfect cube')

else:

if x < 0:

ans = - ans

print('Cube root of ' + str(x) + ' is ' + str(ans))

6.00.1X LECTURE 42

LOOP CHARACTERISTICS
 Need a loop variable

◦ Initialized outside loop
◦ Changes within loop
◦ Test for termination depends on variable

 Useful to think about a decrementing function
◦ Maps set of program variables into an integer
◦ When loop is entered, value is non-negative
◦ When value is <= 0, loop terminates, and
◦ Value is decreased every time through loop

 Here we can use abs(x) – ans**3

6.00.1X LECTURE 43

WHAT IF MISS A CONDITION?
 Suppose we don’t initialize the variable?

◦ Likely get a NameError; or worse use an expected value to
initiate the computation

 Suppose we don’t change the variable inside the loop?
◦ Will end up in an infinite loop, never reaching the

terminating condition

6.00.1X LECTURE 44

GUESS-AND-CHECK
 you are able to guess a value for solution

 you are able to check if the solution is correct

 keep guessing until find solution or guessed all values

 the process is exhaustive enumeration

6.00.1X LECTURE 45

CLEANER GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of ", cube, ” is ", guess)

6.00.1X LECTURE 46

CLEANER GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, ’is not a perfect cube’)

else:

if cube < 0:

guess = -guess

print('Cube root of ' + str(cube) + ' is ' + str(guess))

6.00.1X LECTURE 47

EXHAUSTIVE ENUMERATION
 Guess and check methods can work on problems with
a finite number of possibilities

 Exhaustive enumeration is a good way to generate
guesses in an organized manner

6.00.1X LECTURE 48

