Différences entre versions de « 14 »
De Mi caja de notas
Ligne 1 : | Ligne 1 : | ||
+ | {{:wikipedia:14 (number)}} | ||
{{:wikipedia:14}} | {{:wikipedia:14}} | ||
Version actuelle datée du 1 août 2022 à 02:52
| ||||
---|---|---|---|---|
Cardinal | fourteen | |||
Ordinal | 14th (fourteenth) | |||
Numeral system | tetradecimal | |||
Factorization | 2 × 7 | |||
Divisors | 1, 2, 7, 14 | |||
Greek numeral | ΙΔ´ | |||
Roman numeral | XIV | |||
Greek prefix | tetrakaideca- | |||
Latin prefix | quattuordec- | |||
Binary | 11102 | |||
Ternary | 1123 | |||
Senary | 226 | |||
Octal | 168 | |||
Duodecimal | 1212 | |||
Hexadecimal | E16 | |||
Hebrew numeral | י"ד | |||
Babylonian numeral | 𒌋𒐘 |
14 (fourteen) is the natural number following 13 and preceding 15.
Mathematics
Fourteen is the seventh composite number.
Properties
14 is the third distinct semiprime,[1] being the third of the form (where is a higher prime). More specifically, it is the first member of the second cluster of two discrete semiprimes (14, 15); the next such cluster is (21, 22), members whose sum is the fourteenth prime number, 43.
14 has an aliquot sum of 8, within an aliquot sequence of two composite numbers (14, 8, 7, 1, 0) in the prime 7-aliquot tree.
14 is the third companion Pell number and the fourth Catalan number.[2][3] It is the lowest even for which the Euler totient
φ ( x ) = n {\displaystyle \varphi (x)=n}
has no solution, making it the first even nontotient.[4]
According to the Shapiro inequality, 14 is the least number such that there exist
x 1 {\displaystyle x_{1}}
,
x 2 {\displaystyle x_{2}}
,
x 3 {\displaystyle x_{3}}
, where:[5]
with and
A set of real numbers to which it is applied closure and complement operations in any possible sequence generates 14 distinct sets.[6] This holds even if the reals are replaced by a more general topological space; see Kuratowski's closure-complement problem.
There are fourteen even numbers that cannot be expressed as the sum of two odd composite numbers:
where 14 is the seventh such number.[7]
Polygons
14 is the number of equilateral triangles that are formed by the sides and diagonals of a regular six-sided hexagon.[8] In a hexagonal lattice, 14 is also the number of fixed two-dimensional triangular-celled polyiamonds with four cells.[9]
14 is the number of elements in a regular heptagon (where there are seven vertices and edges), and the total number of diagonals between all its vertices.
There are fourteen polygons that can fill a plane-vertex tiling, where five polygons tile the plane uniformly, and nine others only tile the plane alongside irregular polygons.[10][11]
The Klein quartic is a compact Riemann surface of genus 3 that has the largest possible automorphism group order of its kind (of order 168) whose fundamental domain is a regular hyperbolic 14-sided tetradecagon, with an area of by the Gauss-Bonnet theorem.
Solids
Several distinguished polyhedra in three dimensions contain fourteen faces or vertices as facets:
- The cuboctahedron, one of two quasiregular polyhedra, has 14 faces and is the only uniform polyhedron with radial equilateral symmetry.[12]
- The rhombic dodecahedron, dual to the cuboctahedron, contains 14 vertices and is the only Catalan solid that can tessellate space.[13]
- The truncated octahedron contains 14 faces, is the permutohedron of order four, and the only Archimedean solid to tessellate space.
- The dodecagonal prism, which is the largest prism that can tessellate space alongside other uniform prisms, has 14 faces.
- The Szilassi polyhedron and its dual, the Császár polyhedron, are the simplest toroidal polyhedra; they have 14 vertices and 14 triangular faces, respectively.[14][15]
- Steffen's polyhedron, the simplest flexible polyhedron without self-crossings, has 14 triangular faces.[16]
A regular tetrahedron cell, the simplest uniform polyhedron and Platonic solid, is made up of a total of 14 elements: 4 edges, 6 vertices, and 4 faces.
- Szilassi's polyhedron and the tetrahedron are the only two known polyhedra where each face shares an edge with each other face, while Császár's polyhedron and the tetrahedron are the only two known polyhedra with a continuous manifold boundary that do not contain any diagonals.
- Two tetrahedra that are joined by a common edge whose four adjacent and opposite faces are replaced with two specific seven-faced crinkles will create a new flexible polyhedron, with a total of 14 possible clashes where faces can meet.[17]pp.10-11,14 This is the second simplest known triangular flexible polyhedron, after Steffen's polyhedron.[17]p.16 If three tetrahedra are joined at two separate opposing edges and made into a single flexible polyhedron, called a 2-dof flexible polyhedron, each hinge will only have a total range of motion of 14 degrees.[17]p.139
14 is also the root (non-unitary) trivial stella octangula number, where two self-dual tetrahedra are represented through figurate numbers, while also being the first non-trivial square pyramidal number (after 5);[18][19] the simplest of the ninety-two Johnson solids is the square pyramid [a] There are a total of fourteen semi-regular polyhedra, when the pseudorhombicuboctahedron is included as a non-vertex transitive Archimedean solid (a lower class of polyhedra that follow the five Platonic solids).[20][21][b]
Fourteen possible Bravais lattices exist that fill three-dimensional space.[22]
G2
The exceptional Lie algebra G2 is the simplest of five such algebras, with a minimal faithful representation in fourteen dimensions. It is the automorphism group of the octonions , and holds a compact form homeomorphic to the zero divisors with entries of unit norm in the sedenions, .[23][24]
Riemann zeta function
The floor of the imaginary part of the first non-trivial zero in the Riemann zeta function is ,[25] in equivalence with its nearest integer value,[26] from an approximation of [27][28]
In science
Chemistry
14 is the atomic number of silicon, and the approximate atomic weight of nitrogen. The maximum number of electrons that can fit in an f sublevel is fourteen.
In religion and mythology
Christianity
According to the Gospel of Matthew "there were fourteen generations in all from Abraham to David, fourteen generations from David to the exile to Babylon, and fourteen from the exile to the Messiah" (Matthew 1, 17).
It can also signify the Fourteen Holy Helpers.
Mythology
The number of pieces the body of Osiris was torn into by his fratricidal brother Set.
The number 14 was regarded as connected to Šumugan and Nergal.[29]
In other fields
Fourteen is:
- The number of days in a fortnight.
- The Fourteenth Amendment to the United States Constitution gave citizenship to those of African descent, in a post-Civil War (Reconstruction) measure aimed at restoring the rights of slaves.
- The number of lines in a sonnet.[30]
- The Piano Sonata No. 14, also known as Moonlight Sonata, is one of the most famous piano sonatas composed by Ludwig van Beethoven.
- Auto racing legend A.J. Foyt most often carried the #14 on his cars, and as his primary number since the early 1970s.
- MLB Hall of Famer Ernie Banks wore the #14 while playing for the Chicago Cubs, with the team retiring the number in his honor in 1982.
Notes
- ^ Furthermore, the square pyramid can be attached to uniform and non-uniform polyhedra (such as other Johnson solids) to generate fourteen other Johnson solids: J8, J10, J15, J17, J49, J50, J51, J52, J53, J54, J55, J56, J57, and J87.
- ^ Where the tetrahedron — which is self-dual, inscribable inside all other Platonic solids, and vice-versa — contains fourteen elements, there exist thirteen uniform polyhedra that contain fourteen faces (U09, U76i, U08, U77c, U07), vertices (U76d, U77d, U78b, U78c, U79b, U79c, U80b) or edges (U19).
References
- ^ Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A002203 : Companion Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
- ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
- ^ "Sloane's A005277 : Nontotients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
- ^ Troesch, B. A. (July 1975). "On Shapiro's Cyclic Inequality for N = 13" (PDF). Mathematics of Computation. 45 (171): 199. doi:10.1090/S0025-5718-1985-0790653-0. MR 0790653. S2CID 51803624. Zbl 0593.26012.
- ^ Kelley, John (1955). General Topology. New York: Van Nostrand. p. 57. ISBN 9780387901251. OCLC 10277303.
- ^ Sloane, N. J. A. (ed.). "Sequence A118081 (Even numbers that can't be represented as the sum of two odd composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-08-03.
- ^ Sloane, N. J. A. (ed.). "Sequence A238822 (Number of equilateral triangles bounded by the sides and diagonals of a regular 3n-gon.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-05-05.
- ^ Sloane, N. J. A. (ed.). "Sequence A001420 (Number of fixed 2-dimensional triangular-celled animals with n cells (n-iamonds, polyiamonds) in the 2-dimensional hexagonal lattice.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-05-15.
- ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 231. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
- ^ Baez, John C. (February 2015). "Pentagon-Decagon Packing". AMS Blogs. American Mathematical Society. Retrieved 2023-01-18.
- ^ Coxeter, H.S.M. (1973). "Chapter 2: Regular polyhedra". Regular Polytopes (3rd ed.). New York: Dover. pp. 18–19. ISBN 0-486-61480-8. OCLC 798003.
- ^ Williams, Robert (1979). "Chapter 5: Polyhedra Packing and Space Filling". The Geometrical Foundation of Natural Structure: A Source Book of Design. New York: Dover Publications, Inc. p. 168. ISBN 9780486237299. OCLC 5939651. S2CID 108409770.
- ^ Szilassi, Lajos (1986). "Regular toroids" (PDF). Structural Topology. 13: 69–80. Zbl 0605.52002.
- ^ Császár, Ákos (1949). "A polyhedron without diagonals" (PDF). Acta Scientiarum Mathematicarum (Szeged). 13: 140–142. Archived from the original (PDF) on 2017-09-18.
- ^ Lijingjiao, Iila; et al. (2015). "Optimizing the Steffen flexible polyhedron" (PDF). Proceedings of the International Association for Shell and Spatial Structures (Future Visions Symposium). Amsterdam: IASS. doi:10.17863/CAM.26518. S2CID 125747070.
- ^ a b c Li, Jingjiao (2018). Flexible Polyhedra: Exploring finite mechanisms of triangulated polyhedra (PDF) (Ph.D. Thesis). University of Cambridge, Department of Engineering. pp. xvii, 1–156. doi:10.17863/CAM.18803. S2CID 204175310.
- ^ Sloane, N. J. A. (ed.). "Sequence A007588 (Stella octangula numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-18.
- ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-18.
- ^ Grünbaum, Branko (2009). "An enduring error". Elemente der Mathematik. 64 (3). Helsinki: European Mathematical Society: 89–101. doi:10.4171/EM/120. MR 2520469. S2CID 119739774. Zbl 1176.52002.
- ^ Hartley, Michael I.; Williams, Gordon I. (2010). "Representing the sporadic Archimedean polyhedra as abstract polytopes". Discrete Mathematics. 310 (12). Amsterdam: Elsevier: 1835–1844. arXiv:0910.2445. Bibcode:2009arXiv0910.2445H. doi:10.1016/j.disc.2010.01.012. MR 2610288. S2CID 14912118. Zbl 1192.52018.
- ^ Sloane, N. J. A. (ed.). "Sequence A256413 (Number of n-dimensional Bravais lattices.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-18.
- ^ Baez, John C. (2002). "The Octonions". Bulletin of the American Mathematical Society. New Series. 39 (2): 186. arXiv:math/0105155. doi:10.1090/S0273-0979-01-00934-X. MR 1886087. S2CID 586512. Zbl 1026.17001.
- ^ Moreno, Guillermo (1998), "The zero divisors of the Cayley–Dickson algebras over the real numbers", Bol. Soc. Mat. Mexicana, Series 3, 4 (1): 13–28, arXiv:q-alg/9710013, Bibcode:1997q.alg....10013G, MR 1625585, S2CID 20191410, Zbl 1006.17005
- ^ Sloane, N. J. A. (ed.). "Sequence A013629 (Floor of imaginary parts of nontrivial zeros of Riemann zeta function.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-16.
- ^ Sloane, N. J. A. (ed.). "Sequence A002410 (Nearest integer to imaginary part of n-th zero of Riemann zeta function.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-16.
- ^ Sloane, N. J. A. (ed.). "Sequence A058303 (Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-16.
- ^ Odlyzko, Andrew. "The first 100 (non trivial) zeros of the Riemann Zeta function [AT&T Labs]". Andrew Odlyzko: Home Page. UMN CSE. Retrieved 2024-01-16.
- ^ Wiggermann 1998, p. 222.
- ^ Bowley, Roger. "14 and Shakespeare the Numbers Man". Numberphile. Brady Haran. Archived from the original on 2016-02-01. Retrieved 2016-01-03.
Bibliography
- Wiggermann, Frans A. M. (1998), "Nergal A. Philological", Reallexikon der Assyriologie, retrieved 2022-03-06
Fourteen or 14 may refer to:
- 14 (number), the natural number following 13 and preceding 15
- One of the years 14 BC, AD 14, 1914, 2014
Music
- 14th (band), a British electronic music duo
- 14 (David Garrett album), 2013
- 14, an unreleased album by Charli XCX
- "14" (song), a 2007 song by Paula Cole from Courage
- "Fourteen", a 2000 song by The Vandals from Look What I Almost Stepped In...
Other uses
- Fourteen (film), a 2019 American film directed by Dan Sallitt
- Fourteen (play), a 1919 play by Alice Gerstenberg
- Fourteen (manga), a 1990 manga series by Kazuo Umezu
- 14 (novel), a 2013 science fiction novel by Peter Clines
- The 14, a 1973 British drama film directed by David Hemmings
- Fourteen, West Virginia, United States, an unincorporated community
- Lot Fourteen, redevelopment site in Adelaide, South Australia, previously occupied by the Royal Adelaide Hospital
- "The Fourteen", a nickname for NASA Astronaut Group 3
- Fourteen Words, a phrase used by white supremacists and neo-Nazis
- 14 Irene, an asteroid in the asteroid belt
- Rover 14, various mid-sized cars produced by Rover
- Hillman 14, a family car
See also
- 1/4 (disambiguation)
- Fourteener, a high peak in United States mountains
- Fourteener (poetry), a line of 14 syllables
- Fourteen 14, an Italian Eurodance project
- List of highways numbered 14
- Onefour, an Australian rap group
- Onefour, Alberta, a research substation in Canada
14 est le plus petit anti-indicateur pair, c'est-à-dire le plus petit entier pair strictement positif n'appartenant pas à l'image de l'indicatrice d'Euler.
11 12 13 14 15 16 17 Décennies : -10 -0 0 10 20 30 40 Siècles : -IIe -Ier Ier IIe IIIe Millénaires : -IIe -Ier Ier IIe IIIe |
L'année 14 est une année commune qui commence un lundi.
Événements
- 11 mai[1] : le recensement dénombre 4 937 000 citoyens romains[2].
- Été : Tibère part de Rome pour l’Illyrie pour finir de la pacifier. Auguste, affaibli, l’accompagne jusqu’à Bénévent, puis se rend à Astura, sur la côte du Latium, pour s’embarquer pour la Campanie. Il assiste à Capri aux jeux traditionnels des éphèbes, à Naples aux jeux gymniques ou quinquennaux. À Nole, il se trouve subitement indisposé. Il rappelle Tibère en toute hâte. Tibère le trouve fort malade, mais peut avoir avec lui un entretien secret[2].
- 19 août : décès d'Auguste à Nola, premier empereur romain[2].
- 17 septembre : Auguste est divinisé[3]. Début du règne de Tibère, empereur romain (fin en 37).
- Septembre-octobre[4] : les légions romaines du Rhin et Pannonie se révoltent après la mort de l'empereur Auguste (Legio XXI Rapax, Legio V Alaudae, Legio I Germanica, Legio XVI Gallica, Legio XIV Gemina, etc.). Germanicus et Drusus répriment la rébellion[5].
- Début des campagnes de Germanicus en Germanie (fin en 16). Il passe le Rhin et ravage le territoire des Marses, des Tubantes, des Bructères et des Usipètes[5].
- Séjan devient préfet du prétoire en association avec son père Seius Strabo, chevalier d'origine étrusque (fin en 31). Il intervient en Pannonie aux côtés de Drusus[6].
- Tibère supprime les comices électoraux et en transfère les prérogatives à l’assemblée sénatoriale, développe la valeur légale des sénatus-consultes puis érige le Sénat en haute cour de justice compétente dans des causes importantes, comme la sûreté de l’État ou les procès concernant les membres de l’ordre sénatorial[7].
- À Rome, 153 846 personnes bénéficient de distribution gratuite de céréales[8].
- Famine en Chine. Les paysans deviennent anthropophages[9].
- Marcus Junius Silanus, consul romain.
- Pétrone, écrivain latin.
- 19 août : Auguste, empereur romain.
- Julia, fille d'Auguste.
- Agrippa Postumus, fils d'Agrippa et de Julia, petit-fils et fils adoptif d'Auguste.
- Paullus Fabius Maximus, consul romain.
Notes et références
- Revue critique d'histoire et de littérature, recueil mensuel, Paris, A. Franck, (présentation en ligne)
- Louis-Sébastien Le Nain de Tillemont, Histoire des empereurs et des autres princes qui ont régné durant les six premiers siècles de l’Église, vol. 1, Paris, Charles Robustel, (présentation en ligne)
- Michel Kaplan, Le monde romain, Éditions Bréal, , 384 p. (ISBN 978-2-85394-809-8, présentation en ligne)
- Frédéric Hurlet, Les collègues du prince sous Auguste et Tibère : de la légalité républicaine à la légitimité dynastique, École française de Rome, (ISBN 978-2-7283-0372-4, "septembre-octobre+14&pg=PA235 présentation en ligne)
- Maximilien de Ring, Mémoire sur les établissements romains du Rhin et du Danube, A. Leleux, (présentation en ligne)
- Jean-Baptiste-Louis Crevier, Histoire des empereurs romains, vol. 1, Chez Desaint & Saillant, (présentation en ligne)
- Léon Homo, Nouvelle histoire romaine, Fayard, (présentation en ligne)
- École française de Rome, Mélanges : Antiquité, vol. 97, (présentation en ligne)
- Flora Blanchon, Jacques Giès et André Kneib, Arts et histoire de Chine, vol. 2, Paris, Presses Paris Sorbonne, , 496 p. (ISBN 2-84050-123-6, présentation en ligne)
Lien externe
- L’année 14 sur le site de la Bibliothèque nationale de France
Le 14 décembre est l'anniversaire de ma Maman. — capi